An interplay between a generalized-Euler-constant function and the Hurwitz zeta function
نویسندگان
چکیده
منابع مشابه
Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملThe Generalized-Euler-Constant Function γ(z) and a Generalization of Somos’s Quadratic Recurrence Constant
We define the generalized-Euler-constant function γ(z) = ∑∞ n=1 z n−1 ( 1 n − log n+1 n ) when |z| ≤ 1. Its values include both Euler’s constant γ = γ(1) and the “alternating Euler constant” log 4 π = γ(−1). We extend Euler’s two zeta-function series for γ to polylogarithm series for γ(z). Integrals for γ(z) provide its analytic continuation to C − [1,∞). We prove several other formulas for γ(z...
متن کاملSome Formulas for Apostol-euler Polynomials Associated with Hurwitz Zeta Function at Rational Arguments
Throughout this paper, we always make use of the following notation: N = {1, 2, 3, . . .} denotes the set of natural numbers, N0 = {0, 1, 2, 3, . . .} denotes the set of nonnegative integers, Z−0 = {0,−1,−2,−3, . . .} denotes the set of nonpositive integers, Z denotes the set of integers, R denotes the set of real numbers, C denotes the set of complex numbers. The generalized Bernoulli polynomi...
متن کاملcoefficients, and representation of the Hurwitz zeta function
The Stieltjes constants γk(a) are the expansion coefficients in the Laurent series for the Hurwitz zeta function about its only pole at s = 1. We present the relation of γk(1) to the ηj coefficients that appear in the Laurent expansion of the logarithmic derivative of the Riemann zeta function about its pole at s = 1. We obtain novel integral representations of the Stieltjes constants and new d...
متن کاملThe Critical Values of Generalizations of the Hurwitz Zeta Function
We investigate a few types of generalizations of the Hurwitz zeta function, written Z(s, a) in this abstract, where s is a complex variable and a is a parameter in the domain that depends on the type. In the easiest case we take a ∈ R, and one of our main results is that Z(−m, a) is a constant times Em(a) for 0 ≤ m ∈ Z, where Em is the generalized Euler polynomial of degree n. In another case, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2010
ISSN: 1370-1444
DOI: 10.36045/bbms/1290608199